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We investigate the transport properties of a one-dimensional superconductor-normal metal-superconductor
(S-N-S) system described within the tight-binding approximation. We compute the equilibrium dc Josephson
current and the time-dependent oscillating current generated after the switch on of a constant bias. In the first
case an exact embedding procedure to calculate the Nambu-Gorkov Keldysh Green’s function is employed and
used to derive the continuum and bound states contributions to the dc current. A general formalism to obtain
the Andreev bound states (ABSs) of a normal chain connected to superconducting leads is also presented. We
identify a regime in which all Josephson current is carried by the ABS and obtain an analytic formula for the
current-phase relation in the limit of long chains. In the latter case, the condition for perfect Andreev reflections
is expressed in terms of the microscopic parameters of the model, showing a limitation of the so-called
wide-band-limit (WBL) approximation. When a finite bias is applied to the S-N-S junction we compute the
exact time evolution of the system by solving numerically the time-dependent Bogoliubov-de Gennes equa-
tions. We provide a microscopic description of the electron dynamics not only inside the normal region but also
in the superconductors, thus gaining more information with respect to WBL-based approaches. Our scheme
allows us to study the ac regime as well as the transient dynamics whose characteristic time scale is dictated

by the velocity of multiple Andreev reflections.
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I. INTRODUCTION

In the last few years nanoscopic Josephson junctions have
been widely studied both theoretically and experimentally as
possible candidates to provide an alternative technology to
silicon-based electronics.!~® Special attention has been paid
to the analysis of superconducting atomic-size quantum point
contacts (SQPC) (Ref. 7) such as single-level quantum dots
and nanowires. Among the most striking features experimen-
tally observed we mention the subgap structure in the
current-voltage characteristics driven by multiple Andreev
reflections,® the single-electron tunneling through discrete
electronic states,” and the nanoscopic dc Josephson current.!'”

Within the so-called Hamiltonian approach'' it is possible
to provide an accurate microscopic description of these sys-
tems, where some relevant length scales (Fermi length, size
of the junction, etc.) are comparable. This approach relies on
tight-bindinglike Hamiltonians and has the advantage to treat
the tunneling Hamiltonian describing the SQPC to all
orders.'"'2 Tn SQPC the Andreev bound states (ABSs) (Refs.
13 and 14) play an important role since they can carry an
important amount of dc Josephson current.!*-1® Such states
origin from multiple Andreev reflections occurring at the
superconductor-device contact and come in pairs, one above
and one below the Fermi level, carrying opposite supercur-
rents. In spite of the large theoretical effort in studying the dc
Josephson regime in SQPC, a proper description of extended
junctions is still lacking since the electrodes degrees of free-
dom have been so far absorbed in an approximate frequency-
independent pairing and on-site potentials at the boundaries
of the central region.!’-1°
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The calculation of the ac Josephson current is more in-
volved. At present the ac regime has been studied using
Floquet-based methods combined with nonequilibrium
Green’s function techniques.!"?*2! This approach, however,
is limited to the dc bias case and other interesting time-
dependent driving fields, such as ac bias or voltage pulses,
cannot be addressed. A possible alternative approach is the
one based on the real time propagation but, so far, only nor-
mal metal-quantum-dot-superconductor junctions have been
studied.?

In this paper we investigate the transport properties of a
one-dimensional ~ (1D)  superconductor-normal  metal-
superconductor (S-N-S) system?® composed by a normal
tight-binding chain embedded between two 1D supercon-
ductors described by the Bogoliubov—de Gennes Hamil-
tonian. We will study both the static dc Josephson current J
and the time-dependent oscillating current generated after the
switch on of a constant bias. In the dc case we employ an
exact embedding procedure and calculate the three different
contributions to J, carried by the ABS, the normal bound
states (with energy below the bottom of the band), and the
continuum states. We show that if the pairing potential is
larger than half the bandwidth of the normal region, all Jo-
sephson current is carried by the ABS’s. In this regime we
are able to extend the results by Affleck et al.!” in the limit of
long normal region. The use of the exact embedding self-
energy allows us to relate the phenomenological paring po-
tential of Ref. 17 with the microscopic parameters of the
model, thus obtaining a condition for perfect Andreev reflec-
tions in term of the physical order parameter A. In addition
we highlight a limitation of the commonly used wide-band-
limit (WBL) approximation.

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.80.205408

PERFETTO, STEFANUCCI, AND CINI

superconducting chain M-site normal chain superconducting chain

A>0 A=0 A>0
D PP @@ @ T>P- BB @
ts tr tn tr ls

FIG. 1. (Color online) Scheme of the S-N-S junction. For illus-
tration the superconducting leads are 1D chain with nearest-
neighbor hopping 7 [i.e., £,=215 cos ¢ in Eq. (3)] and on-site pair-
ing potentials A;=Az=A with y;=xz=0. The hopping integral
between the boundary sites of the superconducting and normal re-
gions is #7 [i.e., V, =ty sin g\2/A in Eq. (4), where A is the number
of sites in the leads].

When a finite bias is applied to the S-N-S junction, we
compute the exact time evolution of the system by solving
numerically the time-dependent Bogoliubov—de Gennes
equations.'3?*25 This is done within the so-called partition-
free approach, in which the S-N-S system is assumed to be
contacted and in equilibrium before the external bias is
switched on.?%?” Explicit calculations are performed in the
case of superconducting leads of finite length. However, as
already discussed in Ref. 28, the electrodes are long enough
to reproduce the time evolution of the infinite-leads system.
The above approach gives us the possibility to explore the
transient dynamics and provides a time-dependent picture of
the Andreev reflections. In the long-time limit we recover the
expected oscillating current, whose Fourier transform dis-
plays contributions from different harmonics of the funda-
mental Josephson frequency. By extracting the dc component
of the oscillating current, we are also able to reproduce the
subgap structure in the current-voltage characteristics.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and briefly recall the Nambu and
Bogoliubov—de Gennes formalisms. In Sec. III the equilib-
rium Josephson current is studied by means of an exact em-
bedding procedure. Numerical results for short junctions are
reported in Sec. IV while the limit of long normal regions is
analytically carried out in Sec. V. In Sec. VI we investigate
the time-dependent regime. Two appendices corroborate the
analytic derivations. Finally summary and main conclusions
are drawn in Sec. VIIL.

II. MODEL

We consider a hybrid S-N-S system consisting of a nor-
mal region contacted to two superconductors, as illustrated in
Fig. 1. In the Bogoliubov—de Gennes formalism the annihi-
lation (creation) fermion operators ¢\ annihilates (creates)
electrons of spin up, while the annihilation (creation) fer-
mion operators E{j) annihilates (creates) holes of spin down.
In order to avoid confusion we put a tilde on the hole opera-

tors. The Hamiltonian of the system is described by

In this work we consider normal regions consisting of a
tight-binding chain of length M and nearest-neighbor hop-
ping f, with Hamiltonian
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M-1
Hy=1ty2 [eficivy =& @ ]+ He. (2)
i=1

The Hamiltonians for the Left/Right (L/R) superconducting
leads has the general form

o t 4 = Xt
H,=>, [84Coa1Caat = €qChaiCaal + Da€™?Cyp1Cha)
q

+ Aae_lxaEZalcan]’ (3)

where A, is the pairing potential in lead @=L,R with corre-
sponding phase x,. The one-particle energies &, span the
range (—W, W) where 2W is the lead bandwidth. We assume
that the tunneling between the superconductors and the nor-
mal region occurs only via the boundary sites of the chain
and model Hy as

. P
Hp=>, Vq[c:;mc” + C;RTCMT =G0y _Cj,RchL] +H.c.
q

4)
In the last term of Eq. (1) u is the chemical potential and

I\AJT, | is the number of electron/holes with spin T/].
The time-dependent current®® at the a=L,R interface is

I,(1) =22 V, Re TI[GT, (8.1, (5)
q

where the Nambu lesser Green’s function is defined as
[G<(t1’t2)]m,n = Gn<1,n(t17t2)
~ ,((c;T(h)ch(h» @ l(tl)CnT(tz»)
<chnT(t1)Enl(t2)> <Ejnl(tl)gnl(l2)> .
(6)

In the above definition the indices m and n denote either a
site in the normal chain or a ¢ state in the «=L,R lead. We
observe that the off-diagonal components of the Green’s
function can be interpreted as spin-flip propagators in the
effective Bogoliubov—de Gennes space. The retarded, ad-
vanced and greater Green’s functions are defined in a similar
way as in Eq. (6).

The rest of the paper is devoted to the calculation of 7,(z).
First we will focus on the equilibrium problem and calculate
the dc Josephson current J=1I;(0)=1Ix(0). Then we apply a
finite bias voltage across the junction and compute numeri-
cally the time-dependent current 7, (¢) at the left interface.

III. DC JOSEPHSON CURRENT

The dc Josephson current J=1,(0) is obtained from Egq.
(5) with an equilibrium lesser Green’s function and reads

J=2Re f ‘21—‘”Tr[2 vqc_;qu(w)} : (7)
T La

In equilibrium the lesser Green’s function is related to the
retarded/advanced Green’s function via the fluctuation-
dissipation theorem
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G~ (0) =~ fw)[G(w) -

where f is the Fermi distribution function. In the following
we work at zero temperature. This means that the effective
pairing potential in Eq. (3) corresponds to the BCS gap at
T=0. The entire formalism remains valid at finite tempera-
ture 7, provided that the order parameter A corresponds to
the BCS gap at 7. The dependence on temperature of the
current J is mainly due to the change in A(T), since the
Fermi function f remains close to a theta function for T
=<A. This is supported by the results shown in Fig. 6 which
agree well with previous studies on temperature dependence
of J.3°

By exploiting the Dyson equation for the retarded/
advanced Green’s function the Josephson current J can be
expressed in terms of the embedding self-energy

G(w)], (8)

3w) = X V2ogl(w)o. )
q
as

dw
J=2 Ref ;Tr{[GT,l(w)ZZ(w) -G (w2 (w)]o},

(10)

where o, is the third Pauli matrix and g’/“ is the Green’s

function of the isolated « lead. We observe that Eq. (10) is
valid for any S-N-S system provided that the S-N hopping
occurs only at the two boundary sites of the normal region.
The general expression for the embedding self-energy is

Er/a(w) — ( ma(w * l77)
- A (w* ing)eXa

where m and A are the effective on-site and pairing poten-
tials. In the case of 1D superconducting leads with A sites

(see Fig. 1)
2 .
g,=2tgcosq, V,=tr Asing (12)

and the self-energy at w=0 is (see Appendix A)

Ea(w + in)eixu>
, (11)
my(w * in)

2N =2 A2 - 2447
m(2) =25 / % (13)
2ts \’Aa—z
[2 2 2
1 - A —42 -z -A
AP =4, 7 &= o . (19

2
2tS \rz _Aa

where z is a complex frequency and the infinite A limit has
been taken. The WBL result is easily recovered by defining
the tunneling rate I'=2¢3/1, expanding Egs. (13) and (14) in
powers of z/tg and A/tg and retaining only the zeroth order
term. In this way one gets

WBL(Z) —_
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FIG. 2. (Color online) Schematic representation of the density
of states of the S-N-S system. The three spectral regions corre-
sponding to normal bound states, Andreev bound states, and con-
tinuum states are displayed assuming A;=Az=A.

~ r A
AWBL() = = a«
a (Z) 2 R —Ai _ Zz

which for z=w+i% yields the commonly used WBL self-
energy 3VBL, We would like to observe that evaluating 3"VB-
at the Fermi energy w= =0 one finds that m“B-=0 and that

the pairing potential AVBLocT" is independent of the order
parameter A. In Sec. V we will discuss the implications of
this feature for long normal chains.

In the rest of the section we do not assume any specific
form of the embedding self-energy and present a general
procedure to calculate the dc Josephson current of Eq. (10).
For practical purposes we split the integral in Eq. (10) in
three different energy regions and identify the contributions
of the normal bound states, Andreev bound states, and con-

tinuum__states (see Fig. 2). The energy range is
(—VW2+AZ —A.i) for the filled continuum states,

(=A,i,,0) for the filled ABS’s and (=, —\W?+ Arzmx) for the
filled normal bound states, where A,,,=max{A;,Ag} and
A in=min{A;,Ag}. Thus letting j(w) be the integrand func-

tion in Eq. (10) the total Josephson current reads

J=Jcont + Javs + Jnbss (15)
A
min d(l) .
‘Icom:f , ~—i(o), (16)
_\J’W2+A2 277
0
dw
Jabs:f _](C!)), (17)
_Amin 277
\W2+A12nax dw
ans=f B ](w)~ (18)
—00 71—

The nature of the above decomposition is illustrated in Fig.
3, where the integrand function j(w) is displayed for a 1D
S-N-S junction at a fixed value of y=x;—xg=7/3. In Fig. 3
we have chosen the superconducting gap A about one order
of magnitude smaller than the leads bandwidth W=4t. This
is done in order to highlight the contribution coming from
the normal bound states, although we expect that it becomes
less and less important as A/W—0. We would like to em-
phasize, however, that the normal bound states play a crucial
role in a self-consistent calculation of the total current, since
the effective mean-field potentials depend on the density and
in the central region the contribution of the normal bound
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FIG. 3. Integrand function j(w) in Eq. (10) for a 1D S-N-S
junction with M=4, te=t7=1, ty=1.2, A;=Ar=0.6, and x=x;
—xg=m/3. The two dashed vertical lines correspond to w=
- W2+Ar2nax and —A;, and mark the boundaries of the three inte-
gration regions. A broadening 7=10"* has been used to give to j a

finite width around the bound states. Energies are in units of |tg].

states is certainly not negligible. Indeed the total number of
particles Ny in the central normal region is

M
Ny=—i f d—“’TrE [G=(0)]pym> (19)

27 m=1

where the integrand function in the above equation has a
similar structure as in Fig. 3.

It is worth noticing that the function j(w) is proportional
to a Dirac delta around the bound states. Therefore the nu-
merical integrals in Eqs. (17) and (18) must be computed
with care. An efficient alternative way to calculate with high
accuracy Jy, and J,,, consists in realizing that

dEY) dEY
Jabs = 22 abS’ ans = 22 nbs s (20)
ndx m o dX

where E) and E™) are the energies of the filled Andreev and
normal bound states, respectively. Equation (20) follows di-
rectly from the Hellmann-Feynmann theorem, which in this
case can be exploited since E). and E®) are the eigenener-
gies of the Hamiltonian in Eq. (1). By a simple gauge trans-
formation the phase y can be transferred to the hopping in-
te(grals V, in Eq. (4), and hence the derivative of E™ and
En’g)s with respect to y yields the average of the current op-
erator over the Andreev and bound eigenstates. In the follow-
ing we derive and elegant formula to calculate Efl'é)s and Efl’,’;Z

The bound-state energies can be obtained by solving the

self-consistent 2M X 2M secular problem

HNE) | ) = E| i) 21)

with |E| < A, (Andreev) and |E| > W2+ A2

. (normal), and

H?vff(E) = HN + mR(E)[CITWTCMT + ELLEMl]
+ &R(E)[eiXRc;,,TEMl + e_iXRELchT]
+ mL(E)[CITClT + Ehgu]

+ AL (E)eec] &) + eE] e )], (22)

PHYSICAL REVIEW B 80, 205408 (2009)

with m and A as in Eq. (11). In the effective Hamiltonian the
on-site and pairing potentials at the boundary sites 1 and M
are renormalized by the embedding procedure. In order to
simplify the algebra we define the momenta k such that £
=2ty cos(k) and assume A; =Ag=A_ .. =A,i,=A, which also
implies A,(E)=Agz(E)=A, and m;(E)=mg(E)=m,. In Ap-
pendix B we describe in detail how the eigenvalue problem
in Eq. (21) is analytically solved to yield the following equa-
tion for the momenta k

0 =1ry sin® k(M + 1) + (= 1)M23A7 cos x sin® k
— 2157 sin?(kM) + A} sin® k(M — 1)
— m[2ty sin(kM) — my sin k(M - 1)]?, (23)

where y=x;—xgz. The bound-state energies are found by
solving Eq. (23) and retaining only the values of k for which
|2ty cos k| <A and |2ty cos k| > \W?+ A% We observe that in
general the variable k is complex, see Appendix B.

We would like to end this section by commenting two

limiting cases. For an isolated normal region (m;=A;=0),
the allowed momenta are simply k=mj/(M+1), j=1,...,M,
as expected. We also observe that if we set m;,=0 and assume

a constant pairing potential 5k=5, the above equation re-
duces to Eq. (3.3) of Ref. 17.

IV. NUMERICAL RESULTS FOR J(x)

By following the approach described in the previous sec-
tion, we specialize to the case of half-filled 1D leads as in

Fig. 1 (m=m'"® and A=A'P) and numerically evaluate the dc
Josephson current. In Fig. 4 we show the current J as a
function of y as well as the three different contributions J g,
Jps, and J s for a chain of M =8 sites. We notice that there is
an optimum value of 7y [see Fig. 4 panel (d)] at which there
is a nontrivial cancellation of the nonlinear contributions
Jeont and Jyps and J(x) becomes a straight line. In this regime
the Josephson current is also maximized for every value of y.
We have further investigated this instance and found that for
any given A=A;=A, there exists an optimum value of 7y
=t§\’,’) at which this property is observed. In the left panel of
Fig. 5 we plot tg\l,’) as a function of A for the same parameters
as in Fig. 4. We have also observed that tl(\l,’) is quite insensi-
tive to the size M of the normal region. In the right panel of
Fig. 5 we display the corresponding critical current J®)(r),
i.e., the value of the Josephson current reached at y=. The
linearization of the current-phase relation is also known as
the Ishii’s sawtooth behavior' and corresponds to perfect
Andreev reflection.!” We notice that the ABS contribution
saturates the dc Josephson current for #y=0.3, see Fig. 4
panel (f). In the next section we consider the limit of long
chains and identify a regime for the occurrence of this satu-
ration.

Finally we show that within our approach it is possible to
reproduce the crossover of the current-phase relation be-
tween short and long S-N-S junctions, already discussed in
previous works.*® In Fig. 6 we display J(x) both for a short
junction (M=1) as well as for a long junction (M=51). It
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FIG. 4. (Color online) Total Josephson current J (solid curve),
Jeont (dotted-dashed curve), Jy (dashed curve), and Jy,, (dotted
curve) as a function of y=yx;—xz for a S-N-S junction with M =8,
tg=tr=1, A;=Ag=0.6. The panels (a)—(f) correspond to ty=1.5,
1.2, 1.0, 0.744, 0.6, and 0.3. Energies are in units of |ts\.

appears that for large superconducting order parameter the
current-phase relation evolves from a sin(y/2)-shaped
curve'* to a straight line by passing from M=1 to M=51.
These results are in agreement with the findings of Ref. 30
where the change in the order parameter A is due to a change
in temperature.

V. LIMIT OF LONG NORMAL REGION

In this section we study the Josephson current in the limit
of long chains. By numerical inspection we have verified that
J=J s for ty=A/2, i.e., all the Josephson current is carried
by the ABS’s. In this regime the number of occupied ABS’s
equals exactly the number of sites M of the tight-binding
chain. Thus the ABS’s constitute a local basis set with a good

0.8
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Z

{®

0.4

0.2

0 2 4 6 8 10
(a) A
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FIG. 6. (Color online) Total Josephson current J as a function of
X=X1—Xg for a short junction with M=1 (panel a) and for a long
junction with M =51 (panel b) for different values of A;=Az=A
=0.1, 0.01, 0.005, and 0.001 (from top to bottom). The rest of
parameters are tg=1, fy=3.8, and ty=2. For clarity, the curves cor-
responding to A=0.01 and 0.005 have been multiplied by a factor 5,
while curves corresponding to A=0.001 by a factor 10. Energies are
in units of |zg|.

approximation. As a consequence no normal bound states
occur, while the amplitude of the current carrying continuum
states is exponentially suppressed in the normal region. The
current J=J,,, is obtained by calculating the contribution

ES of the ABS’s to the total energy
tO[
J( ) n——abs A/ abs( ) (24)
dx

To calculate the energy Eabs 2ty cos k of a single ABS it is
convenient to write
j 2
k=— L% oM, (25)
M+1 M+1

where &, is a k-dependent phase shift. Following Refs. 17
and 32 the total ABS energy can be expressed as

B =200 1) [ )

f dk
A
0 71-
2 2
41 Tr [(%*) +<5"F’_) —l], (26)
2M+1 ( T 6

dE K

abs

(O + O, ]f(Eabs)

0.14
0.12
0.1

1®(m)

0.08
0.06
0.04

0 2 4 6 8 10

(b) A

FIG. 5. (Left panel) tl(\l,’) as a function of A=A; =Ag. (Right panel) Critical current J(7) as a function of A calculated at thty,’). The rest

of parameters are M=8, tg=t;=1. Energies are in units of |g|.
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where 6, . correspond to the two branches of ABS’s, vy
=2ty sin kg is the Fermi velocity and kg is the Fermi momen-
tum. For large M the momentum k is a continuous variable in
the range (0, 7r) and the phase shifts &, can be determined by
inserting Eq. (25) in Eq. (23) and expanding in powers of
1/M. To lowest order Eq. (23) reduces to

(ag sin 8, + by, cos 8)* = 2, 27)
k i + Dy 3 k

where =+ (m,%—&i)cos(2k)—2tNmk cos k, by
=2tymy sin k—(m;—AD)sin(2k), and  ci=2(1yA, sin kKX(1
—cos ) . The solutions of Eq. (27) read

) e

2

[ k

6+ =—arctan— * —arccos| 1 - —5——
ay 2 a; + bk

Equation (28) provides a generalization to nonvanishing on-
site potential of the phase shifts found by Affleck et al.!”
Inserting Eq. (28) in Eq. (26) the Josephson current is ob-
tained from Eq. (24). We notice that the combination &,

+ 6 - is independent of the phase difference y for any Ek and
my. Therefore the dc Josephson current reads

_ mup d 5kF,+)2 (5’%—)2]
J(X)_M+1d)([( T " T ' (29)

Below we specialize the analysis to 1D leads at half-filling
(kp=m/2). In this case m,iD:O, see Eq. (13), and one can
show that

1 (1 + A7 )* + 4137 (cos x—1)
5,%4_, ==+ Earccos S o ,
(ty+ AkF)

(30)

with A‘szﬁ,'(FD. We would like to stress that Eq. (30) has been
obtained starting from a microscopic model Hamiltonian,
i.e., without resorting to phenomenological effective on-site
and pairing potentials. The relation between the effective

pairing potential Ek ~and the microscopic order parameter A
in Eq. (14) allows us to discuss some relevant limiting cases
in terms of physical quantities.

In Fig. 7 we plot the Josephson current in Eq. (29) using
for the phase shift the result in Eq. (30). We fix the values of
the hopping parameters to be ty=0.618, t¢=t7=1 and study
how the current-phase relation depends on A. We notice that
for A=1 the current is linear in the ranges [0, 7) and (7,27,
with a sharp discontinuity at y=r. This is the Ishii sawtooth
behavior®! already mentioned in the previous section. In that
case, however, the sawtooth behavior was the result of a
perfect cancellation between the contribution of the continu-
ous states and of the ABS’s. We also verified that the Joseph-
son current calculated by means of the brute-force numerical
evaluation of Eq. (10) at ty=A/2 is in excellent agreement
with the current evaluated as in Eq. (29) already for M
=10.

As shown in Ref. 17 the linear behavior of J is due to

perfect Andreev reflections which occur for #y= A,iFD , 1.e.,
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FIG. 7. (Color online) Josephson current as in Eq. (29) for dif-
ferent values of A for ty=0.618, tg=t;=1. For A=1 Eq. (31) is
fulfilled. J(x) is in unit of vy/(M+1). Energies are in units of |fg|.

2
t S
tN=2—tT2(V4t§+A2—A). (31)
N

We recall that the above current corresponds to the total Jo-
sephson current only for ¢, <<A/2, which, together with Eq.
(31), implies

2

t
ty= % (32)
V215 + 1

Equations (31) and (32) establish a regime in which the Jo-
sephson current is entirely carried by the Andreev bound
states via perfect Andreev reflections.

Before concluding this section we would like to observe
that in the WBL approximation the condition for perfect An-
dreev reflection implies tN=&kWFB L=T"/2, which does not de-
pend on the order parameter A. The same limitation of the
WBL approximation emerges in the calculation of the phase
shifts, see Eq. (30). Therefore the use of WBL self-energies
in superconducting transport through long normal chains
does not allow to study the dependence of the current-phase
relation on the physical order parameter.

VI. AC JOSEPHSON CURRENT

In this section we consider the time-dependent current
flowing through the S-N-S junction after the switch on of a
dc bias voltage. In order to get a sensible transient regime,
we adopt the so-called partition-free approach, in which the
S-N-S system is assumed to be contacted and in equilibrium
before the external bias is switched on.?®?” The numerical
results contained in this section are obtained by computing
the exact time evolution of the system described in Eq. (1)
with finite 1D superconducting leads of length A (see Fig. 1).
Without loss of generality we switch on the bias at t=0. The
biased Hamiltonian at positive times reads

I:I(t)=I:IN+I:IL(I)+I:IR(I)+I:IT_/-L(NT_]\A]L)s (33)

where
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FIG. 8. (Color online) Current I;(¢) through the left interface for different values of A;=Ar=A=0 (thin solid curve), 0.1 (dotted curve),
0.5 (dotted-dashed curve), 0.7 (dashed curve), and 1 (thick solid curve). The rest of parameters are M=1, A=80, &=0.2 tg=17=—1, x;.

=xx=0, and U, =—Ug=0.25. Panel (b) displays a magnification of the transient regime for 0 <¢< 15. Energies are in units of g

and &t are in units of 1/]zg|.

H(0) = 2[4+ Up)(Ch1Cqat = ChatCyat)
q

+A, ol (Xat2Ual)

~ —i(x o+ 2U ) =t
ga1Caal + A€ et )cqaican]’

(34)
and U, are the dc bias voltages applied to lead a. We denote
with H(0) the matrix representing the equilibrium Hamil-
tonian H of Eq. (1) projected over one-particle states and

with H(z) the corresponding matrix representing I:I(t) of Eq.
(34) for t>0. The generic element of H(=0) is a 2X2
matrix in the Bogoliubov—de Gennes space

H,,,(1) Am,n(t))
A;,n(t) _Hm,n(t) ’

where m,n=1,...,2A+M. According to the partition-free
approach, we first calculate the equilibrium configuration of
the contacted system by solving the secular problem

2 [H(O)]m’n(uk(n) ) — E(k)<uk(m) ) ’

vi(n) v(m)

B: (GIMES ( (35)

(36)

and construct the initial lesser Green’s function

[G=(0,0)],,., = i F(H(0))],,, = > if(E¥)

k

" (u%(m)uk(n) i (myn) ) @
vi(m)ug(n) vi(m)v(n)

The initial states are then propagated in time according to the
time-dependent Bogoliubov—de Gennes equations

d
izuk(m’t) = E [Hm,n(t)uk(nst) + Am,n(t)vk(nvt)]

i%vk(m,t) = 2 [ H,,(v(n,0) + A, (Du(n,1)],

(38)

which are solved by

, while time

(uk(m,t) ) -3 [Te—iff)dTH(T)]m’n<uk(n’o) ), (39)

vi(m,1) . vi(n,0)

with initial condition wu;(m,0)=u;(m) and vi(m,0)=v(m)
and T the time-ordering operator. The lesser Green’s function
G=(t,t) has the same form as the rhs of Eq. (37) with u;(m)
and v,(m) replaced by wu;(m,t) and v,(m,r). Expressing the
time-dependent wave functions as in Eq. (39) it is straight-
forward to show that

G=(t,1) = Te~T0?™MDIG=(0,0) Telo?™8) (40)
We notice from Eq. (34) that H(?) has an explicit time de-
pendence (the time-dependent phase of the order parameter)
and hence the evolution operator is not the exponential of a
matrix albeit the bias is constant in time. This problem is
solved by discretizing the time and calculating the evolution
of the lesser Green’s function within a time-stepping proce-
dure

G<(tj’tj) ~ e_iﬂ(t/)5IG<(tj_1,tj_l)eiﬂ(tf)&, (41)
where #;=jét, &t is a small time step and j a positive integer.
The time-dependent current at the left interface is calculated
from Eq. (5). The above approach allows us to reproduce the
time evolution of the infinite-leads system up to a time
Tmax=2A/v, where v is the maximum velocity for an occu-
pied one-particle state. For r=T,,,, high-velocity particles
have time to propagate till the far boundary of the leads and
back, yielding undesired finite-size effects in the calculated
current.”® For this reason we set A such that 2A/v is much
larger than the time at which the stationary oscillatory state is
reached.

In Fig. 8 we plot the time-dependent current through a
single-dot junction (M =1) for different values of the super-
conducting order parameter A; =Ar=A, ranging from 0 to 1.
In panel (b) we display a magnification of the transient re-
gime. It appears that the transient dynamics becomes slower
as A is increased. This is due to the fact that at bias U
~2A/n, an incident electron coming from the left supercon-
ducting lead undergoes about n Andreev reflections inside
the central region before being transmitted to the right lead.
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FIG. 9. (Color online) Current I;(z) through the left interface for different values of A;=Ar=A=0 (thick solid curve), 0.25 (thin solid
curve), 0.35 (dotted curve),

0.5 (dotted-dashed curve), and 0.75 (dashed curve). The rest of parameters are M=1, A=6000, 5=0.1 fg
=100, t;=4.47 (i.e., I'= 2tT/ ts=0.4), x,=xz=0, and U;=—Ux=0.5. Panel (b) displays a magnification of the transient regime for 0 <zr<<6.
The time propagation has been obtained by retaining only the one-particle states in Eq. (34) with energy —10=g,= 10. We have checked that

=g,=10.
within this choice the results with A=0 perfectly agree with ones of Ref. 27 obtained within the WBL approximation. Energies are in units
such that I'=0.4, while time and & are in units of 1/I’

We also verified that, at fixed A, the transient time scale
grows by reducing the bias voltage (not shown). A qualita-
tively similar behavior is observed in Fig. 9, where the hop-
ping in the superconducting leads is taken about two orders
of magnitude larger that all the other energy scales, in the
spirit of the WBL approximation. Another interesting ob-
served feature is that the dc component of the current ; in
Fig. 8 displays a nonlinear behavior with A. In particular I,

increases with A passing from 0 to 0.5, but decreases by
further increasing A form 0.5 to 1. Such behavior, however

is not seen in Fig. 9, where I, is a monotonically decreasing
function of A.

At long time the current /,(z) displays the well-known ac
Josephson behavior, with persistent oscillations at multiple
frequencies of the fundamental Josephson frequency w;
=2(U,—Upg). To investigate the stationary oscillations we
performed a discrete Fourier transform of I;(¢) in the time
window (Tyins Timax) Where T is much larger than the tran-
sient time scale. Denoting with N, the number of time steps

in the time window, the Fourier components of 7;(¢) are de-
fined according to?33

i(wn) = E ein t’[IL(t) IL]

(42)
Nyj=1
where w,=2mn/(N;t). In Fig. 10 we plot the dissipative

contribution Ip(w,)=2 Re I(w,) and the nondissipative one

Inp(@,)=—2 Im I(»,) to the current.!?! The first four har-
monics are clearly visible and the fundamental component is
the dominant one. We also observe that the amplitude of the
harmonics is not a monotonically decreasing function of the
frequency. The above procedure provides an alternative
method to perform the spectral decomposition of the ac Jo-
sephson current. Our time-dependent approach is not limited
to dc biases and the same computational effort is required to
study ac or more complicated time-dependent biases. From
our numerical time-dependent simulations, it is also possible
to extract the current-voltage characteristics of the junction
In Fig. 11 we show I, as a function of the applied dc bias for
a S-S junction (M=0). The system consists of two 1D super-
conductors connected to each other via a hopping integral ¢
between the boundary sites of the L and R leads. We observe

0.08

|

Wn

V

FIG. 10. Nondissipative coefficient Iyp (panel a) and dissipative coefficient iD (panel b) obtained from the discrete Fourier transform of

I,(1) as described in the main text. They are calculated using 2000 equidistant points of I;(1)—1; with ¢ in the range (50, 140). In this plot
A=150, 6:=0.05, A=1, and the Josephson frequency is w;=2(U;—Ug)=1. The rest of the parameters are the same as in Fig. 8. Energies and
frequency are in units of |zg|.
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FIG. 11. (Color online) Current-voltage characteristics {, L Vs
U,) of the S-S junction for different values of the hopping #7. The
rest of parameters are Up=0, rg=—1, and A=0.5. The vertical dotted
lines denote the values U;=2A/n (n=1,2,3,4) at which multiple
Andreev reflections are expected. Energies are in units of |tg].

a well-defined subgap structure characterized by current
kinks at U; —Ugr=2A/n, a feature already pointed out in pre-
vious works within the WBL approximation.'!2%2! We have
also checked that if the WBL is modeled with 1D leads (i.e.,
by taking 7¢>1 and t;,=\I'tg¢/2 with finite I'), we numeri-
cally recover the current-voltage characteristics already ob-
tained in previous works.!!20

Finally we have computed the time-dependent evolution
of the spin-up electron density according to

an(t) == i([G<(t’t)]m,m)1,l’ (43)

where m denotes a site of the S-N-S system and the matrix
element (--+);; is taken over the Nambu space. We stress
that our approach allows us to determine 7,,/(¢) not only in
the normal region but also inside the superconducting
leads.?* This is a clear advantage with respect to the WBL
approximation, in which only the dynamics of the normal
region can be described. In Fig. 12 we show the density
variation on,,;(t)=n(t),;—n,,(0) as a function of the atomic
position m along the 1D S-N-S system and time. In this case
a long junction with M =20 is considered. It is clearly seen at
t>0 the perturbation induced by the switch on of the bias
(U, #0 and Ug=0) propagates both inside the L lead (left-
ward) and the normal region (rightward) with velocities vg
~2t¢ and vy=2ty, respectively. At long time the density
displays stationary oscillations due to the stabilization of the
ac Josephson regime. In particular on the left lead the aver-
age value of dn,,(t) is lower with respect to the one in the
right lead, since U; > Ug. In Fig. 13 we plot the transient
behavior of the charge density for a junction in which the
(equilibrium) condition for perfect Andreev reflection given
in Eq. (31) has been imposed. Remarkably we see that no
appreciable density variation inside the lead R occurs before
a dwelling time given by

Lawell = NIARs (44)

where n=2A/(Uz—-U;) and where t,g=M/vy is the time
needed to cross the normal chain between two consecutive
reflections. Indeed for r<<t,,,.; an electron inside the N re-
gion undergoes n (almost) perfect Andreev reflections before

PHYSICAL REVIEW B 80, 205408 (2009)
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FIG. 12. (Color online) Contour plot of the time-dependent
variation in density for spin-up electrons &n,,;(t) =n(t),,;—n(0),,; as
a function of the atomic position m along the 1D S-N-S system (x
axis) and time (y axis). dn;;(7) is displayed for the first 40 sites in
both leads and inside the M =20 sites of the normal region. The rest
of parameters are A=100, 6:=0.3, t5=1.2, ty=1, 17=0.8, A;=A,
=0.2, x,=xz=0, U;=0.3, and Ug=0. Energies are in units of |z,
while time and & are in units of 1/[zy].

being transmitted through the right interface. The pattern of
these multiple reflections is clearly visible in Fig. 13, in
which the model parameters are chosen in order to have n
=4 and ldwellz36‘

VII. SUMMARY AND CONCLUSIONS

In this paper we have studied the dc and ac transport
properties of a tight-binding S-N-S junction. In the dc case
we identified three contributions to the dc Josephson current
coming from the Andreev bound states, normal bound states
and continuum states. The calculation of the latter contribu-
tion has been performed by employing an exact embedding
procedure which consists in integrating out the supercon-
ducting degrees of freedom and in expressing the Nambu-
Gorkov Keldysh Green’s function in terms of the embedding
self-energy. For the bound-state contributions we calculated

120

0.05

90

time

60

30

Ifuos

40L 20L 1L IR 20R 40R
atom position

FIG. 13. (Color online) Same as Fig. 12. The model parameters
are: M=21, A=200, 6t=0.3, tg=1, ty=1, 17=1.104, A;=Ar=04,
X.=xr=0, U;=0.2, and Ugr=0. Energies are in units of |zy|, while
time and &t are in units of 1/|¢y].

205408-9



PERFETTO, STEFANUCCI, AND CINI

the phase derivative of the eigenenergies of all occupied dis-
crete states. The secular problem is cast in terms of an effec-
tive energy-dependent Hamiltonian in which the on-site and
pairing potentials of the normal chain are renormalized via
the embedding self-energy. The bound-state eigenenergies of
chains of arbitrary length are determined from a general
equation which includes the full frequency dependence of
the embedding self-energy. The limit of long chains allows
for further analytic manipulations and the ABS’s contribution
to the total dc Josephson current is expressed in terms of
energy-dependent phase shifts.

For 1D superconducting leads we obtain an exact formula
for the embedding self-energy at half-filling. Explicit nu-
merical results have been presented for short and long
chains, and different regimes have been analyzed. The Ishii’s
sawtooth behavior results from a subtle cancellation of
highly nonlinear continuum and ABS’s contributions while
the normal bound-state contribution vanishes. For chain hop-
pings #y smaller than half of the superconducting order pa-
rameter A we numerically observed that the dc Josephson
current is entirely carried by the ABS’s. This circumstance
has been analytically investigated in the limit of long chains.
The condition for the occurrence of the Ishii’s sawtooth be-
havior is expressed in terms of the microscopic parameters of
the model. We here also point out a limitation of the WBL
approximation, i.e., the independence of the current-phase
relation from A.

The ac Josephson regime was studied by applying a con-
stant bias voltage across the junction and solving numeri-
cally the time-dependent Bogoliubov—de Gennes equations
for finite leads. We used the partition-free initial conditions
for which the system is contacted and in equilibrium before
an external driving force is switched on. If the leads are
sufficiently long the results of the time propagation are the
same as those of a truly infinite systems up to a critical time
at which finite-size effects appear.”® Such critical time is,
however, large enough to allow for studying transient re-
sponses as well as the ac Josephson regime setting in after all
transient effects have been washed out. The transient time
scale is dictated by the dwelling time during which an elec-
tron undergoes several Andreev reflections before being
transmitted. By extracting the dc component of the ac Jo-
sephson current we have been able to reproduce a well-
defined subgap structure in the current-voltage characteristics
of a S-S junction. As expected the characteristics displays
kinks at biases ~2A/n. The time-dependent approach also
permits to perform a spectral decomposition of the ac cur-
rent. By Fourier transforming the curve I, (¢) in a proper time
window we computed both the dissipative and nondissipative
components. Such procedure can be easily generalized to
arbitrary time-dependent fields, e.g., ac or pulsed biases, at
the same computational cost and provides an alternative ap-
proach to Floquet-based schemes.'"?! We also wish to em-
phasize that within the present approach a full microscopic
description of the superconductors is provided, and hence we
are able describe the electron dynamics not only inside the
normal region but also inside the leads.** This allows us to
gain further information with respect to the WBL approxi-
mation. In conclusion we would like to point out the pro-
posed time-dependent approach is not limited to 1D elec-

PHYSICAL REVIEW B 80, 205408 (2009)

trodes and can be readily generalized to investigate more
realistic superconductor-normal metal interfaces. In particu-
lar it would be interesting to study the case in which the
normal region is two-dimensional, since it has been experi-
mentally observed®-¢ and theoretically predicted®” that in
such systems the ac Josephson current displays a dominant
Fourier component at twice the fundamental Josephson fre-
quency.
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APPENDIX A: DERIVATION OF THE EMBEDDING SELF-
ENERGY

For 1D leads the coupling V, is given in Eq. (12) and
therefore the retarded embedding self-energy for lead « in
Eq. (9) reads

2
3 (w) = X@% 5in%(q) 08, (@) 0. (A1)

The retarded Green’s function of the uncontacted « lead at
half-filling is given in terms of the 2X2 g-dependent
Bogoliubov—de Gennes Hamiltonian

o ( g, Aae%f) (A2)
ST\ AN — g,
as
r—— (A3)
8aa= o Ho +in
Introducing the eigenvectors
e 2)
s e (Ad)
+ e Xa —<1 - if-)
2 €a

of H,, with eigenvalues §§q= + \s’s§+A§ and taking the limit
A —x Eq. (Al) becomes

m d v v
Ii(w) =217 f Hsin(g)? > a'iqx—‘”'—cr (AS5)
0 ™ v==* w— gc_yq + l7]
The integral can be computed analytically to yield
my(@+in) A (w+in)eXa
Si(0)= ( _ | T (a6
Afw+ineXe my(w+in)
where
@ t% \/Ai—zz—\/Ai—zz+4t§
ma Z = Z_ b
215 VA2 -2
2 [2 2 2_[2 2
< 7 NgT = AL -4t —Nz" - Ay
R@=4,5 —— . (A7)
215 Vz© = Ay

with z is a complex frequency.
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The other relevant components of the Nambu self-energy
are easily obtained starting from the retarded one

3o(w) =2 ()],
25 (0) =~ flo)[24(w) - Z5(w)],

where f is the Fermi distribution function.

(A8)

APPENDIX B: CALCULATION OF THE BOUND STATES

In this appendix we solve the eigenvalue problem in Eq.
(21). We use the following ansatz'” for the eigenstate ampli-
tudes 4(j) on the jth site of the normal region

l/lk(]) ) < Akeikj + Bke_ikj
vi(j) ) \(= 1)/(Cre™ + Dye™)

where j=1,...,M. Due to the symmetry of the problem the
wave function must be chosen so as to fulfill the condition

'r//k(j):< >’ (Bl)

PHYSICAL REVIEW B 80, 205408 (2009)

| (1)] = [u(M)], (B2)

which is equivalent to |v,(1)|=|vi(M)|. The above condition
provides an equation for the allowed wave vectors k, simi-
larly to the case of normal open chains. In the following we
specialize to even M. The case of odd M is similar and does
not introduce extra complications. We first observe that due
to the choice A; =Ay the effective Hamiltonian in Eq. (22) is
invariant under the transformation T:C_I-T—>(—1)-fEM+1__,» , and
;1= (=1Vcppeyjp. It is straightforward to realize that T°=
—1 and hence the wave functions obey the symmetry con-
straint v, (M)=ivu,(1), where v== is a parity index. By ap-
plying the Schrodinger equation to sites 1,2 for spin T and to
sites M ,M—1 for spin | and exploiting the above symmetry
constraint we obtain the following linear systems for the co-
efficients Ay, By, Cy,Dy:

Eik e—ik 0 0 Ak 1
2ik —2ik N -ix/2 ik N —ix/2 —ik
Ine Ine — A M2 — AemX%e B, 2ty cos(k) —my,
0 0 ikM —ikM c. |= . , (B3)
e e k iv
_ Ske—ix/ZeikM _ Ske—ix/ze—ikM _ tNe”‘(M‘l) _ tNe—ik(M—l) D, — iv(2ty cos(k) — my)

where we have chosen u,(1)=A,;e*+Be *=1. Indeed the
proper normalization factor of the Andreev bound-state wave
function is inessential to the calculation of the bound-state
energy. The solution of the above system provides the
k-dependent coefficients

| . ~ .
A= E[ez()(/hkM)(mk _ lNelk) _ iVAkelk],
k

eik(M+1)

Bk = [eix/z([N— mkeik) + iV&keikM],

k

1 . ) - .
G = E[iVelX/z(fN - mye™) — Ae™],
k

eik(M+l)

D= [ive' XM, — 10e™) + Ael*],

k

where

Qk — tNei(X/2+kM)(eZik _ 1) _ iv&k(ezik _ eZikM).

Inserting the above solution in Eq. (B2) and taking into ac-
count the normalization condition u;=1 one finds the follow-
ing equation for the allowed values of &:

(B4)

0 =2[ty sin(kM) — my, sin k(M — 1)) = 15— A? + % cos(2k)

+ 5,% cos 2k(M — 1) — vatyA, cos(x/2)sin(k)sin k(M — 1).
(B5)

Isolating the last term and squaring, the dependence on v
disappears and we end up with an equation valid for both
parities

0= t?\, sif? k(M +1) + (- 1)M2t12v5§ cos x sin® k
—215A? sin?(kM) + A} sin® k(M — 1)

— mi[2ty sin(kM) — my sin k(M - 1)T?, (B6)

which coincides with Eq. (23). The bound-states eigenener-
gies EX=2ty cos k are obtained by solving Eq. (B6) numeri-
cally and retaining only the values of k such that [EW| <A
(Andreev bound states) and |E®)|> \415+A? (normal bound
states). We notice that the wave vectors k for the ABS’s are
real valued while for normal bound states are in general com-
plex. Indeed for |ty <3\4r2+A? the energy E® lies below/
above the continuum only for complex k.

205408-11



PERFETTO, STEFANUCCI, AND CINI

'For a recent review, see, e.g., G. Wendin and V. S. Shumeiko,
Low Temp. Phys. 33, 724 (2007).

2J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev.
Lett. 89, 117901 (2002).

3K. K. Likharev, in Applications of Superconductivity, edited by
H. Weinstock (Kluwer, Dordrecht, 1999).

4V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret,
Phys. Scr., T T76, 165 (1998).

5Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature (London)
398, 786 (1999).

©J. Delahaye, J. Hassel, R. Lindell, M. Sillanpii, M. Paalanen, H.
Seppid, and P. Hakonen, Science 299, 1045 (2003).

7C. W. J. Beenakker and H. van Houten, in Nanostructures and
Mesoscopic Systems, edited by W. P. Kirk and M. A. Reed (Aca-
demic, New York, 1992).

8C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica
C 191, 485 (1992).

°D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 74,
3241 (1995).

10M. C. Koops, G. V. van Duyneveldt, and R. de Bruyn Ouboter,
Phys. Rev. Lett. 77, 2542 (1996).

113 C. Cuevas, A. Martin-Rodero, and A. Levy Yeyati, Phys. Rev.
B 54, 7366 (1996).

12 A. Martin-Rodero, F. J. Garcia-Vidal, and A. Levy Yeyati, Phys.
Rev. Lett. 72, 554 (1994).

3A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

“C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).

15 A. Furusaki, Superlattices Microstruct. 25, 809 (1999).

161, O. Kulik, Sov. Phys. JETP 30, 944 (1970).

177, Affleck, J. S. Caux, and A. M. Zagoskin, Phys. Rev. B 62,
1433 (2000).

18 A. E. Feiguin, S. R. White, and D. J. Scalapino, Phys. Rev. B 75,
024505 (2007).

19F S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, Phys.
Rev. B 76, 174510 (2007).

PHYSICAL REVIEW B 80, 205408 (2009)

20A. Levy Yeyati, J. C. Cuevas, A. Lépez-Dévalos, and A. Martin-
Rodero, Phys. Rev. B 55, R6137 (1997).

21Q.-F. Sun, H. Guo, and J. Wang, Phys. Rev. B 65, 075315
(2002).

22Y. Xing, Q.-F. Sun, and J. Wang, Phys. Rev. B 75, 125308
(2007).

23N denotes a generic nonsuperconducting central region, includ-
ing normal metals, insulaltors, semiconductors, quantum dots,
etc. In the present work N stands for a one-dimensional tight-
binding chain.

24R. Kiimmel, Z. Phys. 218, 472 (1969).

2R, Kiimmel, in Physics and Applications of Mesoscopic Joseph-
son Junctions, edited by H. Ohta and C. Ishii (The Physical
Society of Japan, Tokyo, 1999), p. 19.

26M. Cini, Phys. Rev. B 22, 5887 (1980).

27G. Stefanucci and C. O. Almbladh, Phys. Rev. B 69, 195318
(2004).

BE. Perfetto, G. Stefanucci, and M. Cini, Phys. Rev. B 78, 155301
(2008).

2Tn this work we set e=fi=1.

30U. Gunsenheimer, U. Schiissler, and R. Kiimmel, Phys. Rev. B
49, 6111 (1994).

31C. Ishii, Prog. Theor. Phys. 44, 1525 (1970).

32 A. M. Zagoskin and I. Affleck, J. Phys. A 30, 5743 (1997).

3G. Stefanucci, S. Kurth, A. Rubio, and E. K. U. Gross, Phys.
Rev. B 77, 075339 (2008).

3P, Myohinen, A. Stan, G. Stefanucci, and R. van Leeuwen, Phys.
Rev. B 80, 115107 (2009).

3H. Drexler, J. Harris, E. Yuh, K. Wong, S. Allen, E. Gwinn, H.
Kroemer, and E. Hu, Surf. Sci. 361-362, 306 (1996).

36K. W. Lehnert, N. Argaman, H.-R. Blank, K. C. Wong, S. J.
Allen, E. L. Hu, and H. Kroemer, Phys. Rev. Lett. 82, 1265
(1999).

37A. Jacobs and R. Kiimmel, Phys. Rev. B 71, 184504 (2005).

205408-12



